

FUNDAÇÃO UNIVERSIDADE FEDERAL DO TOCANTINS (UFT) PRÓ-REITORIA DE GRADUAÇÃO (PROGRAD) COMISSÃO PERMANENTE DE SELEÇÃO (COPESE) PROCESSO SELETIVO PARA INGRESSO EM CURSOS DE GRADUAÇÃO EDITAL N° 14 de 24 de MAIO de 2007 — VESTIBULAR 2008

A Fundação Universidade Federal do Tocantins, através de sua Comissão Permanente de Seleção (COPESE), torna pública os Conteúdos das provas/Objeto de avaliação, do Processo Seletivo para provimento de vagas nos cursos de Graduação da UFT (Vestibular 2008), em conformidade com a Lei nº 9.394/96 e regido pelo presente Edital.

Conteúdos das provas/Objetos de avaliação

As provas abordarão os objetos de avaliação a seguir discriminados. Devido ao caráter **multidisciplinar** dos conhecimentos tratados, objetos de avaliação de uma determinada área do conhecimento poderão ser abordados em outra área. **Habilidade Específica - Arquitetura e Urbanismo**

Os candidatos ao curso de Arquitetura e Urbanismo, deverão submeter-se à prova de Habilidade específica.

Orientação geral

A prova é constituída de vários Exercícios de desenho, alguns dos quais têm como requisito noções de perspectiva exata ou "cônica", e de testes de raciocínio espacial que, além da perspectiva, pressupõem o conhecimento das projeções ortogonais: vistas e cortes de objetos.

Língua Estrangeira - (Língua Inglesa ou Língua Espanhola) Orientações gerais

Os itens de Língua Estrangeira avaliarão a capacidade de compreensão de textos autênticos escritos na referida língua. Os textos abordarão temas variados da realidade política, econômica e cultural do mundo contemporâneo. Poderão ser utilizados textos literários, científicos, jornalísticos, publicitários etc.

O candidato deverá apresentar conhecimento vocabular e gramatical suficientes para o entendimento do texto. As questões poderão ser formuladas a partir de expressões e frases que sejam relevantes para a compreensão do texto.

Língua Portuguesa e Literatura Brasileira

Orientações gerais

Os itens de Língua Portuguesa e Literatura Brasileira visam avaliar a capacidade de ler, compreender e interpretar criticamente textos de toda natureza – literários e não-literários –, bem como a capacidade de mobilizar conhecimentos lingüísticos na produção de textos que atendam aos requisitos de adequação, correção, coesão e coerência. O candidato deve, portanto, dominar a norma culta da língua escrita, reconhecer outras variedades lingüísticas, assim como possuir um certo repertório de leituras de textos literários, no nível próprio do concluinte do ensino médio.

PROGRAMA

Língua Portuguesa

Os itens relativos ao conhecimento gramatical e às habilidades de compreensão e interpretação de texto serão embasadas na leitura de excertos de textos variados (literários, jornalísticos, publicitários etc.). No que se refere aos conhecimentos lingüísticos, espera-se que o candidato domine os conteúdos dos itens seguintes:

- 1. níveis de significação do texto: significação explícita e significação implícita, denotação e conotação;
- 2. distinção entre variedades do português;
- 3. norma ortográfica;
- 4. morfossintaxe das classes de palavras: flexão nominal; flexão verbal: expressão de tempo, modo, aspecto e voz; correlação de tempos e modos; elementos estruturais e processos de formação das palavras; concordância nominal e verbal; regência nominal e verbal; pronomes; advérbios; conectivos: função sintática e valores lógicosemânticos.
- 5. processos de organização da frase: coordenação e subordinação; reorganização de orações e períodos.
- 6. citação de discursos: direto, indireto e indireto livre.

Literatura Brasileira

No que se refere aos textos literários, espera-se o conhecimento das obras representativas dos diferentes períodos da literatura brasileira. O candidato deverá demonstrar capacidade de analisar e interpretar os textos, reconhecendo seus diferentes gêneros e modalidades, bem como seus elementos de composição, tanto aqueles próprios da prosa quanto os da poesia. Deverá demonstrar também a capacidade de relacionar o texto com o conjunto da obra em que se insere, com outros textos e com seu contexto histórico e cultural. Questões de caráter interpretativo. Conexão entre estilo de época, movimentos literários e história. Relações entre personagens; personagens e enredo; personagens, enredo e época; personagens, enredo, época e espaço. O texto poético.

LIVROS INDICADOS*

LITERATURA CLÁSSICA:

1. DAS OBRAS:

1.1 AUTOR: Aluísio de Azevedo

GÊNERO: Prosa OBRA: O Cortiço

1.1.2 AUTOR: Augusto dos Anjos

GÊNERO: Poesia

OBRA: Eu e outras Poesias

1.2 LITERATURA REGIONAL:

1.2.1 AUTOR: Isabel Dias Neves (Belinha)

GÊNERO: Poesia OBRA: Fardo Florido

EDITORA: Centro Editorial e Gráfico da Universidade Federal de Goias

Para mais informações sobre onde encontrar o livro, acesse:

http://www.copese.uft.edu.br/index.php?option=com_vestibular2008&task=livro

HISTÓRIA

Orientações gerais

Os itens abordarão temas da História do Brasil e da História Geral. Espera-se que o candidato seja capaz de:

- a) operar com os conceitos básicos do saber histórico: com a relação passado-presente e as várias modalidades do tempo histórico:
- b) identificar, distinguir e relacionar fenômenos históricos;
- c) Compreender que o passado pode ser conhecido a partir das mais variadas fontes, que vão além dos documentos oficiais;
- d) Entender que o uso, a compreensão e a valorização dessas fontes dependem das interpretações dos historiadores e estas, por sua vez, do contexto em que eles vive(ra)m.

PROGRAMA

I História do Brasil

- 1. Populações indígenas do Brasil: experiências antes da conquista, resistências e acomodações à colonização.
- 2. Sistema colonial: organização política e administrativa.
- 3. Economia colonial: extrativismo, agricultura, pecuária, mineração e comércio.
- 4. Interiorização e formação das fronteiras.
- 5. Escravos e homens livres na colônia.
- 6. Religião, cultura e educação na colônia.
- 7. Negros no Brasil: culturas e confrontos.
- 8. Rebeliões e tentativas de emancipação.
- 9. Período Joanino e Independência.
- 10. Primeiro Reinado e Regência: organização do Estado e lutas políticas.
- 11. Segundo Reinado: economia, política e manifestações culturais.
- 12. Escravidão, indígenas e homens livres no século XIX.
- 13. Imigração e abolição.
- 14. Crise do Império e o advento da República.

- 15. Confrontos e aproximações entre Brasil, Argentina, Uruguai e Paraguai (séculos XIX e XX).
- 16. Movimentos sociais no campo e nas cidades no período republicano.
- 17. Política e cultura no Brasil República.
- 18. Transformações da condição feminina depois da 2ª Guerra Mundial.
- 19. Sistema político atual.
- 20. Tocantins: aspectos históricos, cultura regional.

II História Antiga

- 1. Culturas e Estados no Antigo Oriente Próximo.
- 2. Mundo grego.
- 3. Mundo romano.

III História Medieval

- 1. Cristianismo, Igreja Católica e reinos bárbaros.
- 2. Mundos do Islão e de Bizâncio.
- 3. Economia, sociedade e política no Feudalismo.
- 4. Desenvolvimento do comércio, crescimento urbano e vida cultural.
- 5. Crise do século XIV.

IV História Moderna

- 1. Renascimento.
- 2. Reformas religiosas e Inquisição.
- 3. Estado moderno e Absolutismo monárquico.
- 4. Antigo Regime e Ilustração.
- 5. Revoluções Inglesas do século XVII e Revolução Francesa de 1789.
- 6. Revolução Industrial e Capitalismo.

V História Contemporânea

- 1. Europa em guerra e em equilíbrio (1789 1830): Napoleão, Congresso de Viena e Restauração.
- 2. Europa em transformação (1830 1871): revoluções liberais, nacionalistas e socialistas.
- 3. Europa em competição (1871 1914): imperialismo, neo-colonialismo e belle époque.
- 4. O capitalismo nos séculos XIX e XX.
- 5. Classes e interesses sociais em conflito nos séculos XIX e XX.
- 6. Arte e cultura nos séculos XIX e XX: do eurocentrismo ao multiculturalismo.
- 7. As duas grandes guerras mundiais (1914 1945).
- 8. Revoluções socialistas: Rússia e China.
- 9. Décadas de 20 e 30: crises, conflitos e experiências totalitárias.
- 10. Bipolarização do mundo e Guerra Fria.
- 11. Descolonização e principais movimentos de libertação nacional na Ásia e África.
- 12. Conflitos no mundo árabe e criação do Estado de Israel.
- 13. Queda do muro de Berlim, fim do socialismo real e desintegração da URSS.
- 14. Expansão/crescimento do mundo urbano, novas tecnologias e novos agentes sociais e políticos.
- 15. Conflitos étnico-religiosos no final do século XX.

VI História do Tocantins

- 1. Processo de Povoamento do Estado do Tocantins no século XVIII e XIX.
- 2. Economia do Tocantins nos século XVIII e XIX.
- 3. Escravos, Índios e homens livres no inicio do processo de colonização do Tocantins nos séculos XVIII e XIX.
- 4. Movimentos de criação do Estado do Tocantins, desde o século XVIII até 1988.
- As novas configurações socioeconômicas e culturais do Tocantins após a sua criação na constituição Federal de 1988.

GEOGRAFIA

Orientações gerais

Os itens de Geografia objetivam avaliar o nível de apropriação e a capacidade da correta aplicação de um conjunto de conceitos e informações relativos ao espaço geográfico, que abrange sociedade e natureza em suas especificidades e interrelações. Esse tipo de conhecimento constitui o instrumental mínimo para a introdução do indivíduo na análise, síntese e interpretação críticas da realidade contemporânea mundial e brasileira. Espera-se avaliar a capacidade do candidato quanto a:

- a) caracterização e compreensão da sociedade e da natureza, em suas especificidades e inter-relações;
- b) compreensão do espaço geográfico: produção, paisagens, organização e transformação;

- c) compreensão de fatos e processos sociais e naturais como fatos dinâmicos e analisáveis em diversas e complementares escalas de observação;
- d) compreensão do mundo atual por meio dos processos de transformação que o trabalho social imprime à natureza:
- e) identificação de relações entre a realidade brasileira e os processos gerais que regem a sociedade contemporânea, tanto no que se refere à natureza apropriada, transformada e revalorizada quanto no que se refere à sociedade propriamente dita;
- f) conhecimento e utilização das técnicas de localização e representação do espaço geográfico.

PROGRAMA

- I.Espaço geográfico mundial. Desigualdades socioespaciais das atividades econômicas, população, trabalho, centros de poder e conflitos atuais.
- II. Espaço geográfico brasileiro. Formação do território, distribuição territorial das atividades econômicas, população e participação do Brasil na ordem mundial.
 - 1. Formação do território brasileiro e a gênese das desigualdades socioespaciais contemporâneas. Produção de espaços vinculados ao comércio colonial exportador.
 - 2. Processo de industrialização brasileiro.
 - 3. Processo de urbanização e constituição da rede urbana brasileira.
 - 4. Regiões brasileiras e o estado do Tocantins.
 - 5. População brasileira: estrutura, dinâmica e mobilidade geográfica.
 - 6. Brasil na nova ordem mundial.

III.Planeta Terra

- 1. Climas e ecossistemas terrestres.
- 2. Relevo terrestre.
- 3. Água na superfície terrestre.
- IV.A questão ambiental: ciclos globais, agenda ambiental internacional e políticas ambientais no Brasil.
- V.Representações do espaço geográfico: representações gráficas e cartográficas. Tabelas, gráficos, cartas, mapas, perfis e maquetes: possibilidades de leituras, correlações e interpretações.

REDAÇÃO

Orientações gerais

Ao produzir o texto, o candidato deverá expressar-se com clareza, demonstrando correção e fluência na escrita. Deverá utilizar uma variedade mais formal da língua, evitando uso de registros coloquial e vulgar. A grafia correta será de rigor.

A redação será avaliada com base nos seguintes critérios de adequação relacionados:

- Ao tema: desenvolvimento do texto dentro do tema proposto. A fuga total ao tema anula a redação.
 À coletânea: utilização dos elementos apresentados pela coletânea (quando for apresentada). O acréscimo de outros argumentos, dados ou informações é facultativo, desde que pertinentes ao tema. O desconhecimento total dos elementos fornecidos pela coletânea anula a redação.
 Ao tipo de texto: o desenvolvimento de outro tipo de texto que não o proposto anula a redação.
 À modalidade: observância da correção gramatical (concordância, flexão, regência, ortografía); conhecimento das estruturas da modalidade escrita da língua (recursos sintáticos e uso vocabular). Serão examinados pontos como a propriedado a a obrançância do vecebulário empregado além do extegrafía morfologia sintova o como a propriedado a a obrançância do vecebulário empregado além do extegrafía morfologia sintova o
- das estruturas da modalidade escrita da língua (recursos sintáticos e uso vocabular). Serão examinados pontos como a propriedade e a abrangência do vocabulário empregado, além de ortografía, morfologia, sintaxe e pontuação. A ocorrência de clichês e frases feitas e o uso inadequado de vocábulos são aspectos, em princípio, negativos.

Também serão avaliados os seguintes itens, que se referem à semântica do texto.

- Coerência: articulação das idéias no plano conceitual. Serão considerados aspectos negativos a presença de contradições entre frases ou parágrafos.
- Coesão: coesão lingüística (nas frases, períodos e parágrafos); articulação das idéias no plano estrutural. Uso correto dos elementos coesivos (conjunção, pronome, preposição, pontuação).

BIOLOGIA

Orientações gerais

O candidato deve ter conhecimentos fundamentais em Biologia que possibilitem compreender a vida como manifestação de sistemas organizados e integrados, em constante interação com o ambiente físico-químico; deve reconhecer que tais sistemas se perpetuam por meio da reprodução e se modificam no tempo em função de fatores evolutivos, originando a diversidade de organismos e as intrincadas relações de dependência entre eles. Espera-se que o candidato conheça os fundamentos básicos da investigação científica, reconheça a ciência como uma atividade humana em constante transformação, fruto da conjunção de fatores sociais, políticos, econômicos, culturais, religiosos e

tecnológicos, compreenda e interprete impactos do desenvolvimento científico e tecnológico na sociedade e no ambiente. O exame de Biologia avaliará a formação do candidato, considerando o acima exposto e os conhecimentos específicos contidos no programa a seguir, sem valorizar a extensa memorização da terminologia biológica, nem detalhes dos processos bioquímicos.

PROGRAMA

I Biologia Celular

Estrutura e fisiologia da célula

- 1. Estrutura e função das principais substâncias orgânicas e inorgânicas que compõem as células vivas: proteínas, glicídios, lipídios, ácidos nucléicos, vitaminas, água e nutrientes minerais essenciais.
- 2. Organização básica de células procarióticas e eucarióticas.
- 3. Fisiologia celular: transporte através da membrana plasmática e endocitose; funções das organelas celulares; citoesqueleto e movimento celular; núcleo e seu papel no controle das atividades celulares.
- 4. Ciclo de vida das células: interfase e mitose.
- 5. A hipótese da origem endossimbiótica de mitocôndrias e plastos.

II A Continuidade da Vida na Terra

Hereditariedade e natureza do material hereditário

- 1. Bases moleculares da hereditariedade: estrutura do DNA; código genético e síntese de proteínas; mutação gênica e origem de novos alelos.
- 2. Fundamentos da Genética Clássica: conceito de gene e de alelo; leis da segregação e da segregação independente; relação entre genes e cromossomos; meiose e sua relação com a segregação e com a segregação independente; conceito de genes ligados; padrão de herança de genes ligados ao cromossomo sexual.
- 3. Manipulação genética e clonagem: aspectos éticos, ecológicos e econômicos.

Processos de evolução orgânica

- 1. Idéias fixista, lamarkista e darwinista como tentativas científicas para explicar a diversidade de seres vivos, influenciadas por fatores sociais, políticos, econômicos, culturais, religiosos e tecnológicos.
- 2. Teoria sintética da evolução: mutação e recombinação como fontes de variabilidade genética; seleção natural.
- 3. Isolamento reprodutivo e formação de novas espécies.
- 4. Grandes linhas da evolução: conceito de tempo geológico: documentário fóssil; origem da vida; origem e evolução dos grandes grupos de seres vivos; origem e evolução da espécie humana.

III Diversidade da Vida na Terra

Vírus, bactérias, protistas e fungos.

- 1. Características gerais e aspectos básicos da reprodução dos vírus, bactérias, protistas e fungos.
- 2. Importância ecológica e econômica desses organismos.
- 3. Prevenção das principais doenças humanas causadas por esses seres.

Plantas

- 1. Características gerais de briófitas, pteridófitas, gimnospermas e angiospermas.
- 2. Evolução das plantas e adaptações morfológicas e reprodutivas ao ambiente terrestre.
- 3. Angiospermas: organização morfológica básica, crescimento e desenvolvimento; nutrição e transporte; reprodução.

Animais

- 1. Comparação dos principais grupos de animais (poríferos, cnidários, platelmintos, nemátodas, moluscos, anelídeos, artrópodes, equinodermos, peixes, anfíbios, répteis, aves e mamíferos) quanto à alimentação, locomoção, respiração, circulação, excreção, osmorregulação e reprodução, relacionando essas características aos respectivos hábitats.
- 2. Ciclos de vida dos principais animais parasitas do ser humano e medidas profiláticas.

Espécie humana

- 1. Estrutura básica e fisiologia dos sistemas: tegumentar, muscular, esquelético, respiratório, digestório, cardiovascular, imunitário, urinário, endócrino, nervoso, sensorial e genital.
- 2. Nutrição: requisitos nutricionais fundamentais e desnutrição.
- 3. Reprodução: gametogênese, concepção, contracepção, gravidez e parto; regulação neuro-endócrina da reprodução; doenças sexualmente transmissíveis.
- 4. Saúde: conceito e indicadores (expectativa de vida e índice de mortalidade infantil); determinantes sociais do processo saúde-doença; endemias e epidemias (aspectos conceituais); a importância do controle ambiental, do saneamento básico, da vigilância sanitária e epidemiológica e dos serviços de assistência à saúde; consumo de drogas e saúde.

IV Seres Vivos e o Ambiente

Populações, comunidades e ecossistemas.

- 1. O fluxo de energia e os ciclos da matéria nos ecossistemas.
- 2. Dinâmica das populações e das comunidades biológicas: crescimento, interações, equilíbrio e sucessão.
- 3. Características gerais dos principais biomas terrestres e dos ecossistemas brasileiros.

Ecologia humana

- 1. Crescimento da população humana e utilização dos recursos naturais, sob aspectos históricos e perspectivas.
- 2. Alterações provocadas nos ecossistemas pela atividade humana: erosão e desmatamento; poluição do ar, da água e do solo; perda de hábitats e extinção de espécies biológicas.
- 3. Armazenamento e reciclagem do lixo, saneamento: esgoto e tratamento da água.

FÍSICA

Orientações gerais

Os itens de Física terão como objetivo avaliar a compreensão física do mundo natural e tecnológico, com especial ênfase aos temas e aspectos de maior significado para participação e atuação do candidato no mundo contemporâneo. Espera-se que ele demonstre domínio de conhecimento e capacidade de reflexão investigativa, em situações que tenham dimensão tanto prática, quanto conceitual ou sociocultural. Dessa forma, seu conhecimento físico não deverá reduzir-se à memorização ou ao uso automatizado de fórmulas, mas deverá incluir a compreensão das relações nelas expressas, enfatizando-se a visão de mundo que os conceitos, leis e princípios físicos proporcionam. Seu conhecimento físico deve ser entendido como um instrumento para a compreensão do mundo que o rodeia.

A compreensão dos temas específicos de Física deverá ser avaliada em um contexto em que estejam incluídos:

- Reconhecimento de grandezas significativas para a interpretação de fenômenos físicos presentes em situações cotidianas, experimentos simples, fenômenos naturais ou processos tecnológicos. Significado das grandezas físicas, além dos procedimentos, unidades e instrumentos de medida correspondentes. Noção de ordem de grandeza, relações de proporcionalidade e escala.
- Compreensão dos princípios gerais e leis da Física, seus âmbitos e limites de aplicabilidade. Utilização de modelos adequados (macroscópicos ou microscópicos) para a interpretação de fenômenos e previsão de comportamentos. Utilização de abordagens com ênfase fenomenológica, especialmente em temas mais complexos.
- Domínio da linguagem física, envolvendo representação gráfica, formulação matemática e/ou linguagem verbal-conceitual para expressar ou interpretar relações entre grandezas e resultados de experiências.
- Reconhecimento da construção da Física, enquanto um processo histórico. Contribuição da construção da Física para o desenvolvimento tecnológico e sua dimensão sócio-cultural.

PROGRAMA

I Mecânica

Movimento, Forças e Equilíbrio.

- 1. Movimento: deslocamento, velocidade e aceleração (escalar e vetorial).
- 2. Forças modificando movimentos: variação da quantidade de movimento, impulso de uma força, relação entre força e aceleração.
- 3. Inércia e sua relação com sistemas de referência.
- 4. Conservação da quantidade de movimento (escalar e vetorial). Forças de ação e reação.
- 5. Força peso, força de atrito, força elástica, força centrípeta.
- 6. Composição de forças, momento de força e máquinas simples.
- Condições de equilíbrio, centro de massa.
- 8. Descrição de movimentos: movimento linear uniforme e uniformemente variado; movimento bidimensional (composição de movimentos); movimento circular uniforme.

Energia Mecânica e sua Conservação

- 1. Trabalho de uma forca. Potência.
- Energia cinética. Trabalho e variação de energia cinética.
- Sistemas conservativos: energia potencial, conservação de energia mecânica.
- Sistemas dissipativos: conservação da energia total.

Sistema Solar e Universo

- 1. Sistema Solar: evolução histórica de seus modelos.
- Lei da Gravitação Universal.
 Movimento dos corpos celestes, satélites e naves no espaço.
 Campo gravitacional. Significado de g.
- 5. O surgimento do Universo e sua evolução.

Fluidos

- 1. Pressão em líquidos e sua transmissão nesses fluidos.
- 2. Pressão em gases. Pressão atmosférica.
- 3. Empuxo e condições de equilíbrio em fluidos.
- 4. Vazão e continuidade em regimes de fluxo constante.

II Termodinâmica

Propriedades e Processos térmicos.

- 1. Calor, temperatura e equilíbrio térmico.
- 2. Propriedades térmicas dos materiais: calor específico (sensível), dilatação térmica, condutividade térmica, calor latente (mudanças de fase).
- 3. Processos de transferência de calor.
- 4. Propriedades dos gases ideais.
- 5. Interpretação cinética da temperatura e escala absoluta de temperatura.

Calor e Trabalho

- 1. Conservação da energia: equivalente mecânico do calor, energia interna.
- 2. Máquinas térmicas e seu rendimento.
- 3. Irreversibilidade e limitações em processos de conversão calor/trabalho.

III Ondas, Som e Luz.

Fenômenos ondulatórios

- Ondas e suas características.
- 2. Ondas mecânicas: propagação, superposição e outras características.
- 3. Som: propagação e outras características.
- 4. luz: propagação, trajetória e outras características.
- 5. Reflexão, refração, difração e interferência de ondas.
- 6. luz: natureza eletromagnética, cor, dispersão.

Instrumentos Ópticos

- 1. Imagens obtidas por lentes e espelhos: reflexão e refração.
- 2. Instrumentos óticos simples (incluindo o olho humano e as lentes corretivas).

IV Eletromagnetismo

Cargas e Campos Eletrostáticos

- 1. Carga elétrica: quantização e conservação.
- 2. Campo e potencial elétrico.
- 3. Interação entre cargas: força e energia potencial elétrica.
- 4. Eletrização; indução eletrostática.

Corrente Elétrica

- 1. Corrente elétrica: abordagem macroscópica e modelo microscópico.
- 2. Propriedades elétricas dos materiais: condutividade e resistividade; condutores e isolantes.
- 3. Relação entre corrente e diferença de potencial (materiais ôhmicos e não-ôhmicos). Circuitos simples.
- 4. Dissipação de energia em resistores. Potência elétrica.

Eletromagnetismo

- 1. Campos magnéticos e ímãs. Campo magnético terrestre.
- 2. Correntes gerando campos magnéticos (fios e bobinas).
- 3. Ação de campos magnéticos: força sobre cargas e correntes.
- 4. Modelo microscópico para ímãs e propriedades magnéticas dos materiais.
- Indução eletromagnética. Princípio de funcionamento de eletroímãs, transformadores e motores. Noção de corrente alternada.
- 6. Fontes de energia elétrica: pilhas, baterias, geradores.

Ondas Eletromagnéticas

- 1. Ondas eletromagnéticas: fontes, características e usos das diversas faixas do espectro eletromagnético.
- 2. Modelo qualitativo para transmissão e recepção de ondas eletromagnéticas.
- 3. Descrição qualitativa do funcionamento de comunicadores (rádios, televisores, telefones).
- 4. Interações, Matéria e Energia.

V Interações, Matéria e Energia.

1. Interações fundamentais da natureza: identificação, comparação de intensidades e alcances.

- 2. Estrutura da matéria. Modelo atômico: sua utilização na explicação da interação da luz com diferentes meios. Conceito de fóton. Fontes de luz.
- 3. Estrutura nuclear: constituição dos núcleos, sua estabilidade e vida média. Radioatividade, fissão e fusão. Energia nuclear.
- 4. Riscos, benefícios e procedimentos adequados para o uso de radiações.
- 5. Fontes de energia, seus usos sociais e eventuais impactos ambientais.

MATEMÁTICA

Orientações gerais

Espera-se que o candidato demonstre possuir domínio da linguagem básica e compreensão dos conceitos fundamentais da Matemática, tratados nos ensinos fundamental e médio, de forma a saber aplicá-los em situações diversas e relacioná-los entre si e com outras áreas do conhecimento. Ele deve saber reconhecer representações equivalentes de um mesmo conceito, relacionar procedimentos associados às diferentes áreas, analisar e valorizar informações provenientes de diferentes fontes, utilizando ferramentas matemáticas para formar uma opinião própria que lhe permita expressar-se criticamente sobre problemas da Matemática, das outras áreas do conhecimento e da realidade. Será priorizada a avaliação da capacidade de raciocínio, sem dar ênfase à memorização de fórmulas, à mecanização de técnicas ou a cálculos excessivos, desvinculados de contexto significativo ou de aplicações irrelevantes.

PROGRAMA

I Conceitos e Relações Numéricas Básicas e Aplicações

- 1. Números inteiros: compreensão dos algoritmos das quatro operações fundamentais no sistema decimal de numeração, divisibilidade e decomposição em fatores primos.
- 2. Insuficiência dos números inteiros para a comparação de grandezas e para medir partes de um todo: razões e proporções; números racionais; operações e relação de ordem entre números racionais; representação decimal dos números racionais.
- 3. Insuficiência dos números racionais para medir segmentos a partir de uma unidade fixada; conceito de número irracional e representação decimal dos números reais.
- 4. Insuficiência dos números reais para a resolução de equações algébricas de 2° e 3° graus; conceito de número complexo e suas representações geométrica, algébrica e trigonométrica; interpretação algébrica e geométrica das operações e das raízes de números complexos raízes da unidade.
- Matemática financeira como instrumento para a resolução de problemas: conceitos de porcentagem, juro simples e juro composto e sua relação com progressões aritméticas (PA) e progressões geométricas (PG)/ respectivamente.
- 6. Sistemas lineares e matrizes como organização e sistematização de informações; discussão e resolução de sistemas lineares (de até quatro equações e até quatro incógnitas) por escalonamento ou por substituição de variáveis.

II Geometria

- 1. Características, elementos e propriedades geométricas (vértices, arestas, lados, alturas, ângulos focos, diretrizes, convexidade, número de diagonais etc.) das seguintes figuras planas e espaciais: polígonos, círculos, setores circulares, elipses, parábolas, hipérboles, prismas, pirâmides, esferas, cilindros, cones e troncos.
- 2. Congruência e semelhança de figuras planas e espaciais. Razões entre comprimentos, áreas e volumes de figuras semelhantes. Teorema de Tales e aplicações: problemas envolvendo semelhança, somas dos ângulos internos e externos de polígonos. Casos de semelhança e congruência de triângulos e aplicações. Trigonometria do triângulo retângulo como instrumento para a resolução de problemas: seno, cosseno e tangente de ângulos agudos como razão de semelhança nos triângulos retângulos.
- 3. Eixos e planos de simetrias de figuras planas ou espaciais. Reconhecimento das secções planas de cones e definições de elipse, parábola e hipérbole como lugar geométrico. Aplicações.
- 4. Relações métricas nas figuras geométricas planas e espaciais. Teorema de Pitágoras: lei dos senos e cossenos, aplicações em problemas bi e tridimensionais: cálculo de diagonais, alturas, raios etc. Comprimentos (ou perímetros), áreas (ou superficies de sólidos) e volumes.
- 5. Geometria Analítica: coordenadas cartesianas de pontos no plano e no espaço. Distância entre pontos no plano e no espaço e problemas bi e tridimensionais simples envolvendo esses conceitos. Equações de retas no plano: significado dos coeficientes na equação normal, paralelismo e perpendicularismo; distância de ponto a reta. Equações de circunferências no plano: reconhecimento do centro, raio, retas secantes e tangentes. Aplicações. Equações e inequações a duas incógnitas como representação algébrica de lugares geométricos no plano.

III Funções

- 1. Noção de função como instrumento para lidar com variação de grandezas. Os conceitos de domínio e imagem. Caracterizações e representações gráficas e algébricas das seguintes funções: funções módulo, polinomiais de 1° e 2° graus, raiz quadrada, f(x) = xn, f(x) = 1/x, f(x) = 1/x², funções exponenciais e logarítmicas (cálculo de valores aproximados em casos de expoentes irracionais) e as funções seno, cosseno e tangente (definições geométricas no ciclo trigonométrico e valores nos arcos notáveis) e suas transladadas. Aplicações.
- 2. Reconhecimento e interpretação de gráficos de funções: domínio, imagem, valores destacados no gráfico (máximos, mínimos, zeros), biunivocidade, periodicidade, simetrias, intervalos de crescimento e decrescimento, análise da variação da função. Aplicações em situações-problema de contexto variado, incluindo estimativas ou previsões de valores.
- 3. Equações e inequações envolvendo funções: resoluções gráficas e algébricas. Identidades funcionais importantes: princípio de identidade polinomial, produtos notáveis e fatoração de polinômios, principais identidades trigonométricas, propriedades básicas de logaritmos e exponenciais. Desigualdade triangular para módulos. Aplicações em situações-problema.

IV Análise Combinatória, Probabilidade e Estatística.

- 1. Problemas de contagem: o princípio fundamental da contagem, o princípio aditivo, a divisão como um processo de redução de agrupamentos repetidos. Resolver problemas envolvendo a contagem de diferentes tipos de agrupamentos. Binômio de Newton.
- 2. Probabilidade de um evento em um espaço equiprovável: construção de espaços amostrais finitos e representação por meio de frequências relativas. Probabilidade da união e da interseção de eventos. Eventos disjuntos. O conceito de independência de eventos. Probabilidade condicional. Aplicação de probabilidade em situações-problema.
- 3. População e amostra. Estatística descritiva: tratamento da informação obtida com a organização e interpretação de dados em tabelas e gráficos. Significado e aplicação de medidas de tendência central (média, mediana e moda) e de dispersão (desvio-médio, desvio-padrão e variância).

QUÍMICA

Orientações gerais

O candidato deverá demonstrar capacidade de observar e descrever fenômenos e de formular para eles modelos explicativos, relacionando os materiais e as transformações químicas ao sistema produtivo e ao meio ambiente. Esperase que o vestibulando tenha conhecimento de equações usuais e de nomes e fórmulas químicas das substâncias mais comuns. Os modelos atômicos deverão restringir-se apenas aos clássicos, não incluindo os modelos quânticos (orbitais atômicos, moleculares e hibridização).

A Tabela Periódica deverá ser entendida como uma sistematização das propriedades físicas e químicas dos elementos e, assim, seu uso estará presente ao longo de todo o programa. Quanto ao aspecto quantitativo, espera-se do candidato a capacidade de efetuar cálculos estequiométricos elementares, envolvendo grandezas como massa, volume, massa molar, quantidade de matéria, entalpia etc. Será avaliada, também, a sua habilidade em cálculos que envolvam concentração, percentagens e constantes físico-químicas. Considera-se importante à capacidade de lidar com relações quantitativas, envolvendo as variáveis: pressão, volume, temperatura e quantidade de matéria. As relações de massa e de volume, assim como os cálculos estequiométricos, deverão ser encarados como conseqüências diretas da existência de átomos, que tomam parte em proporções definidas na constituição das substâncias.

No tocante à Química Orgânica, espera-se que o candidato tenha a capacidade de reconhecer grupos funcionais e de entender os principais tipos de reações, sabendo aplicá-los aos compostos mais simples. Considera-se importante o conhecimento das propriedades e dos usos de algumas substâncias relevantes para a atividade humana, em especial, das substâncias de importância industrial (petróleo, gás natural, álcoois, sabões e detergentes, macromoléculas naturais e sintéticas).

Espera-se que o candidato tenha habilidades específicas, tais como registrar e analisar dados, organizá-los em tabelas e gráficos, reconhecer a finalidade de materiais de laboratório em montagens experimentais, propor materiais adequados para a realização de experimentos, bem como que tenha conhecimento de aparelhagens de laboratório usadas em operações básicas como filtração, destilação e titulação.

Os itens formulados avaliarão, principalmente, habilidades de compreensão, interpretação e análise das informações recebidas.

PROGRAMA

I Transformações Químicas

- 1.1 Reconhecimento das transformações químicas: mudança de cor, formação/desaparecimento de sólidos numa solução, absorção/liberação de energia, desprendimento de gases.
- 1.2 Interpretação das transformações químicas.
- 1.2.1Evolução do modelo atômico: do modelo corpuscular de Dalton ao modelo de Rutherford-Bohr.
- 1.2.2 Átomos e moléculas: número atômico, número de massa, isótopos, massa molar e constante de Avogadro.

- 1.2.3 Reações químicas.
- 1.3 Representação das transformações químicas
- 1.3.1 Representação simbólica dos elementos e substâncias.
- 1.3.2 Equação química, balanceamento, número de oxidação.
- 1.4 Aspectos quantitativos das transformações químicas.
- 1.4.1 Leis de Lavoisier, Proust e Gay-Lussac.
- 1.4.2 Leis dos gases, equação de estado do gás ideal.
- 1.4.3 Cálculos estequiométricos: massa, volume, mol, massa molar, volume molar dos gases.

II Propriedades e Utilização dos Materiais

- 2.1 Elementos e suas substâncias.
- 2.1.1A tabela periódica: reatividade dos metais alcalinos, metais alcalino-terrosos e halogênios.
- 2.1.2Estados físicos da matéria mudanças de estado.
- 2.1.3Separação de componentes de mistura: filtração, decantação, destilação simples e fracionada, cristalização e cromatografia em papel.
- 2.2 Metais.
- 2.2.1Ligação metálica.
- 2.3 Substâncias iônicas.
- 2.3.1Principais compostos dos grupos cloreto, carbonato, sulfato, nitrato-e fosfato e suas aplicações.
- 2.3.2Ligação iônica.
- 2.4 Substâncias moleculares.
- 2.4.1Hidrogênio, oxigênio, nitrogênio, cloro, amônia: propriedades e usos.
- 2.4.2Ligação covalente.
- 2.4.3Polaridade das ligações.
- 2.4.4Interações intermoleculares: van der Waals e ligação de hidrogênio.

III A Água na Natureza

- 3.1 Estrutura da água, propriedades, importância para a vida e seu ciclo na natureza.
- 3.2 Interações da água com outras substâncias.
- 3.2.1Processo de dissolução, curvas de solubilidade.
- 3.2.2Concentrações (percentagem, ppm, g/L, mol/L...).
- 3.2.3Aspectos qualitativos dos efeitos do soluto nas seguintes propriedades da água: pressão de vapor, temperatura de congelamento, temperatura de ebulição e pressão osmótica.
- 3.3 Estado coloidal.
- 3.3.1Caracterização e propriedades.
- 3.3.2Aplicações práticas.
- 3.4 Ácidos, bases, sais e óxidos.
- 3.4.1 Ácidos e bases (conceito de Arrhenius, Bronsted-Lowry e Lewis).
- 3.4.2Principais propriedades dos ácidos e bases: indicadores, condutibilidade elétrica, reação com metais, reação de neutralização.
- 3.4.3Usos de ácido clorídrico, ácido sulfúrico, ácido nítrico, amônia e hidróxido de sódio.
- 3.4.4Óxidos de carbono, nitrogênio, enxofre, metais alcalinos, metais alcalino-terrosos; interação com água; poluição atmosférica.
- 3.5 Poluição e tratamento da água.

IV Dinâmica das Transformações Químicas

- 4.1 Velocidade das transformações químicas.
- 4.1.1Fatores que influenciam a velocidade da reação.
- 4.1.2Colisões moleculares. Energia de ativação.
- 4.2 Equilíbrio em transformações químicas.
- 4.2.1 Caracterização macroscópica e microscópica (dinâmica) do estado de equilíbrio.
- 4.2.2Constante de equilíbrio.
- 4.2.3Perturbação do equilíbrio.
- 4.2.4Produto iônico da água, pH.
- 4.2.5 Equilíbrios em solução envolvendo ácidos, bases e sais.

V Energia nas Transformações Químicas

- 5.1 Transformações químicas e energia térmica.
- 5.1.1Calor nas transformações químicas. Entalpia.
- 5.1.2Princípio da conservação da energia, energia de ligação.
- 5.2 Transformações químicas e energia elétrica.
- 5.2.1Produção de energia elétrica: pilha.
- 5.2.2Consumo de energia elétrica: eletrólise.

- 5.2.3Representação das transformações que ocorrem na pilha e no processo de eletrólise por meio de equações químicas balanceadas.
- 5.2.4Înterpretação e aplicação de potenciais padrão de redução.

VI Transformações Nucleares Naturais e Artificiais

- 6.1 Conceitos fundamentais da radioatividade: emissões alfa, beta e gama; propriedades.
- 6.2 Reações nucleares: fissão e fusão nucleares.
- 6.3 Radioisótopos e meia-vida.
- 6.4 Usos da energia nuclear e implicações ambientais.

VII Compostos Orgânicos

Características gerais.

- 7.1.1Fórmulas estruturais; reconhecimento das principais classes de compostos (hidrocarbonetos, álcoois, éteres, haletos de alquila, aminas, aldeídos, cetonas, ácidos carboxílicos, ésteres e amidas). Isomeria.
- 7.1.2Propriedades físicas dos compostos orgânicos.
- 7.1.3Fórmulas estruturais e nomes oficiais de compostos orgânicos simples, contendo apenas um grupo funcional. Nomes usuais: etileno, acetileno, álcool metílico, álcool etílico, formaldeído, acetona, ácido acético, tolueno.
- 7.2 Reações em química orgânica: principais tipos de reação-substituição, adição, eliminação, oxidação, redução, esterificação e hidrólise ácida e básica.
- 7.3 Química orgânica no cotidiano.
 - 7.3.1Hidrocarbonetos. Petróleo e gás natural: origem, ocorrência e composição; destilação do petróleo (principais frações: propriedades e usos); combustão; implicações ambientais. Etileno, acetileno, benzeno, tolueno e naftaleno; propriedades e usos.
 - 7.3.2Álcoois: produção de etanol: fermentação alcoólica; álcoois como combustíveis: metanol e etanol; implicações ambientais.
 - 7.3.3Triglicerídeos (gorduras e óleos), sabões e detergentes. Obtenção, propriedades e usos.
 - 7.3.4Macromoléculas. Polímeros naturais: carboidratos e proteínas; estrutura e propriedades. Polímeros sintéticos: polímeros de adição (polietileno, poliestireno, PVC e teflon) e polímeros de condensação (poliester e poliamida); estrutura, propriedades, produção e uso, reciclagem e implicações ambientais.
- O Edital completo e seus respectivos anexos serão divulgados no endereço eletrônico: http://www.copese.uft.edu.br e nos murais dos *campi* da UFT.

Alan Barbiero Reitor

Palmas -TO, 24 de maio de 2007